

www.dotnetinstitute.co.in Call us at - 011-4004 0815

C Programming

Lesson no. 3: C-Program Structure

Before we study basic building blocks of the C programming language, let us look a bare minimum

C program structure so that we can take it as a reference in upcoming chapters.

A C program basically consists of the following parts:

 Preprocessor Commands

 Functions

 Variables

 Statements & Expressions

 Comments

Let us look at a simple code that would print the words "Hello World":

#include <stdio.h>

int main()

{

/* my first program in C */

printf("Hello, World! \n");

return 0;

}

Let us look various parts of the above program:

The first line of the program #include <stdio.h> is a preprocessor command, which tells a C

compiler to include stdio.h file before going to actual compilation.

The next line int main() is the main function where program execution begins.

The next line /*...*/ will be ignored by the compiler and it has been put to add additional comments

in the program. So such lines are called comments in the program.

www.dotnetinstitute.co.in Call us at - 011-4004 0815

C Programming

The next line printf(...) is another function available in C which causes the message "Hello, World!"

to be displayed on the screen.

The next line return 0; terminates main() function and returns the value 0.

Compile & Execute C Program:

Lets look at how to save the source code in a file, and how to compile and run it. Following are the

simple steps:

Open a text editor and add the above-mentioned code.

Save the file as hello.c

Open a command prompt and go to the directory where you saved the file.

Type gcc hello.c and press enter to compile your code.

If there are no errors in your code the command prompt will take you to the next line and would

generate a.out executable file.

Now, type a.out to execute your program.

You will be able to see "Hello World" printed on the screen

Hello, World!

Make sure that gcc compiler is in your path and that you are running it in the directory containing

source file hello.c.

www.dotnetinstitute.co.in Call us at - 011-4004 0815

C Programming

Tokens in C

A C program consists of various tokens and a token is either a keyword, an identifier, a constant, a

string literal, or a symbol. For example, the following C statement consists of five tokens:

printf("Hello, World! \n");

The individual tokens are:

printf

(

"Hello, World! \n"

)

;

Semicolons ;

In C program, the semicolon is a statement terminator. That is, each individual statement must be

ended with a semicolon. It indicates the end of one logical entity.

For example, following are two different statements:

printf("Hello, World! \n");

return 0;

Comments

Comments are like helping text in your C program and they are ignored by the compiler. They start

with /* and terminates with the characters */ as shown below:

/* my first program in C */

You cannot have comments within comments and they do not occur within a string or character

literals.

www.dotnetinstitute.co.in Call us at - 011-4004 0815

C Programming

Identifiers

A C identifier is a name used to identify a variable, function, or any other user-defined item. An

identifier starts with a letter A to Z or a to z or an underscore _ followed by zero or more letters,

underscores, and digits (0 to 9).

C does not allow punctuation characters such as @, $, and % within identifiers. C is a case

sensitive programming language. Thus, Manpower and manpower are two different identifiers in C.

Here are some examples of acceptable identifiers:

mohd zara abc move_name a_123

myname50 _temp j a23b9 retVal

Keywords

The following list shows the reserved words in C. These reserved words may not be used as

constant or variable or any other identifier names.

auto else Long switch

break enum Register typedef

case extern Return union

char float Short unsigned

const for Signed void

continue goto Sizeof volatile

default if Static while

do int Struct _Packed

double

